\(\int \frac {\sec (c+d x) (A+C \sec ^2(c+d x))}{(a+a \sec (c+d x))^{3/2}} \, dx\) [195]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [A] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 33, antiderivative size = 126 \[ \int \frac {\sec (c+d x) \left (A+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^{3/2}} \, dx=\frac {(A-7 C) \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right )}{2 \sqrt {2} a^{3/2} d}-\frac {(A+C) \sec (c+d x) \tan (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}+\frac {(A+5 C) \tan (c+d x)}{2 a d \sqrt {a+a \sec (c+d x)}} \]

[Out]

1/4*(A-7*C)*arctan(1/2*a^(1/2)*tan(d*x+c)*2^(1/2)/(a+a*sec(d*x+c))^(1/2))/a^(3/2)/d*2^(1/2)-1/2*(A+C)*sec(d*x+
c)*tan(d*x+c)/d/(a+a*sec(d*x+c))^(3/2)+1/2*(A+5*C)*tan(d*x+c)/a/d/(a+a*sec(d*x+c))^(1/2)

Rubi [A] (verified)

Time = 0.26 (sec) , antiderivative size = 126, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.121, Rules used = {4164, 4086, 3880, 209} \[ \int \frac {\sec (c+d x) \left (A+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^{3/2}} \, dx=\frac {(A-7 C) \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a \sec (c+d x)+a}}\right )}{2 \sqrt {2} a^{3/2} d}+\frac {(A+5 C) \tan (c+d x)}{2 a d \sqrt {a \sec (c+d x)+a}}-\frac {(A+C) \tan (c+d x) \sec (c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}} \]

[In]

Int[(Sec[c + d*x]*(A + C*Sec[c + d*x]^2))/(a + a*Sec[c + d*x])^(3/2),x]

[Out]

((A - 7*C)*ArcTan[(Sqrt[a]*Tan[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])])/(2*Sqrt[2]*a^(3/2)*d) - ((A + C)
*Sec[c + d*x]*Tan[c + d*x])/(2*d*(a + a*Sec[c + d*x])^(3/2)) + ((A + 5*C)*Tan[c + d*x])/(2*a*d*Sqrt[a + a*Sec[
c + d*x]])

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 3880

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2/f, Subst[Int[1/(2
*a + x^2), x], x, b*(Cot[e + f*x]/Sqrt[a + b*Csc[e + f*x]])], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0
]

Rule 4086

Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))
, x_Symbol] :> Simp[(-B)*Cot[e + f*x]*((a + b*Csc[e + f*x])^m/(f*(m + 1))), x] + Dist[(a*B*m + A*b*(m + 1))/(b
*(m + 1)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^m, x], x] /; FreeQ[{a, b, A, B, e, f, m}, x] && NeQ[A*b - a*B
, 0] && EqQ[a^2 - b^2, 0] && NeQ[a*B*m + A*b*(m + 1), 0] &&  !LtQ[m, -2^(-1)]

Rule 4164

Int[csc[(e_.) + (f_.)*(x_)]*((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(
m_), x_Symbol] :> Simp[(-(A + C))*Cot[e + f*x]*Csc[e + f*x]*((a + b*Csc[e + f*x])^m/(f*(2*m + 1))), x] - Dist[
1/(a*b*(2*m + 1)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*Simp[(-b)*C - 2*A*b*(m + 1) + a*(A*(m + 2) -
C*(m - 1))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, C}, x] && LtQ[m, -1] && EqQ[a^2 - b^2, 0]

Rubi steps \begin{align*} \text {integral}& = -\frac {(A+C) \sec (c+d x) \tan (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}+\frac {\int \frac {\sec (c+d x) \left (a (A-C)+\frac {1}{2} a (A+5 C) \sec (c+d x)\right )}{\sqrt {a+a \sec (c+d x)}} \, dx}{2 a^2} \\ & = -\frac {(A+C) \sec (c+d x) \tan (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}+\frac {(A+5 C) \tan (c+d x)}{2 a d \sqrt {a+a \sec (c+d x)}}+\frac {(A-7 C) \int \frac {\sec (c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx}{4 a} \\ & = -\frac {(A+C) \sec (c+d x) \tan (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}+\frac {(A+5 C) \tan (c+d x)}{2 a d \sqrt {a+a \sec (c+d x)}}-\frac {(A-7 C) \text {Subst}\left (\int \frac {1}{2 a+x^2} \, dx,x,-\frac {a \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{2 a d} \\ & = \frac {(A-7 C) \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right )}{2 \sqrt {2} a^{3/2} d}-\frac {(A+C) \sec (c+d x) \tan (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}+\frac {(A+5 C) \tan (c+d x)}{2 a d \sqrt {a+a \sec (c+d x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 1.31 (sec) , antiderivative size = 121, normalized size of antiderivative = 0.96 \[ \int \frac {\sec (c+d x) \left (A+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^{3/2}} \, dx=\frac {\left (\sqrt {2} (A-7 C) \text {arctanh}\left (\frac {\sqrt {1-\sec (c+d x)}}{\sqrt {2}}\right ) \cos ^2\left (\frac {1}{2} (c+d x)\right ) \sec (c+d x)+\sqrt {1-\sec (c+d x)} (A+5 C+4 C \sec (c+d x))\right ) \tan (c+d x)}{2 d \sqrt {1-\sec (c+d x)} (a (1+\sec (c+d x)))^{3/2}} \]

[In]

Integrate[(Sec[c + d*x]*(A + C*Sec[c + d*x]^2))/(a + a*Sec[c + d*x])^(3/2),x]

[Out]

((Sqrt[2]*(A - 7*C)*ArcTanh[Sqrt[1 - Sec[c + d*x]]/Sqrt[2]]*Cos[(c + d*x)/2]^2*Sec[c + d*x] + Sqrt[1 - Sec[c +
 d*x]]*(A + 5*C + 4*C*Sec[c + d*x]))*Tan[c + d*x])/(2*d*Sqrt[1 - Sec[c + d*x]]*(a*(1 + Sec[c + d*x]))^(3/2))

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(257\) vs. \(2(107)=214\).

Time = 0.73 (sec) , antiderivative size = 258, normalized size of antiderivative = 2.05

method result size
default \(\frac {\sqrt {-\frac {2 a}{\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}}\, \left (-A \left (1-\cos \left (d x +c \right )\right )^{3} \csc \left (d x +c \right )^{3}-C \left (1-\cos \left (d x +c \right )\right )^{3} \csc \left (d x +c \right )^{3}+A \ln \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )+\sqrt {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}\right ) \sqrt {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}-7 C \ln \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )+\sqrt {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}\right ) \sqrt {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}+A \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )+9 C \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )\right )}{4 a^{2} d}\) \(258\)
parts \(-\frac {A \sqrt {-\frac {2 a}{\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}}\, \sqrt {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}\, \left (\sqrt {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}\, \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )-\ln \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )+\sqrt {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}\right )\right )}{4 d \,a^{2}}-\frac {C \sqrt {-\frac {2 a}{\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}}\, \left (\left (1-\cos \left (d x +c \right )\right )^{3} \csc \left (d x +c \right )^{3}+7 \ln \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )+\sqrt {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}\right ) \sqrt {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}+9 \cot \left (d x +c \right )-9 \csc \left (d x +c \right )\right )}{4 d \,a^{2}}\) \(296\)

[In]

int(sec(d*x+c)*(A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(3/2),x,method=_RETURNVERBOSE)

[Out]

1/4/a^2/d*(-2*a/((1-cos(d*x+c))^2*csc(d*x+c)^2-1))^(1/2)*(-A*(1-cos(d*x+c))^3*csc(d*x+c)^3-C*(1-cos(d*x+c))^3*
csc(d*x+c)^3+A*ln(csc(d*x+c)-cot(d*x+c)+((1-cos(d*x+c))^2*csc(d*x+c)^2-1)^(1/2))*((1-cos(d*x+c))^2*csc(d*x+c)^
2-1)^(1/2)-7*C*ln(csc(d*x+c)-cot(d*x+c)+((1-cos(d*x+c))^2*csc(d*x+c)^2-1)^(1/2))*((1-cos(d*x+c))^2*csc(d*x+c)^
2-1)^(1/2)+A*(-cot(d*x+c)+csc(d*x+c))+9*C*(-cot(d*x+c)+csc(d*x+c)))

Fricas [A] (verification not implemented)

none

Time = 0.30 (sec) , antiderivative size = 374, normalized size of antiderivative = 2.97 \[ \int \frac {\sec (c+d x) \left (A+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^{3/2}} \, dx=\left [\frac {\sqrt {2} {\left ({\left (A - 7 \, C\right )} \cos \left (d x + c\right )^{2} + 2 \, {\left (A - 7 \, C\right )} \cos \left (d x + c\right ) + A - 7 \, C\right )} \sqrt {-a} \log \left (-\frac {2 \, \sqrt {2} \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) - 3 \, a \cos \left (d x + c\right )^{2} - 2 \, a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) + 4 \, {\left ({\left (A + 5 \, C\right )} \cos \left (d x + c\right ) + 4 \, C\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{8 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}}, -\frac {\sqrt {2} {\left ({\left (A - 7 \, C\right )} \cos \left (d x + c\right )^{2} + 2 \, {\left (A - 7 \, C\right )} \cos \left (d x + c\right ) + A - 7 \, C\right )} \sqrt {a} \arctan \left (\frac {\sqrt {2} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt {a} \sin \left (d x + c\right )}\right ) - 2 \, {\left ({\left (A + 5 \, C\right )} \cos \left (d x + c\right ) + 4 \, C\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{4 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}}\right ] \]

[In]

integrate(sec(d*x+c)*(A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

[1/8*(sqrt(2)*((A - 7*C)*cos(d*x + c)^2 + 2*(A - 7*C)*cos(d*x + c) + A - 7*C)*sqrt(-a)*log(-(2*sqrt(2)*sqrt(-a
)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)*sin(d*x + c) - 3*a*cos(d*x + c)^2 - 2*a*cos(d*x + c) +
a)/(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)) + 4*((A + 5*C)*cos(d*x + c) + 4*C)*sqrt((a*cos(d*x + c) + a)/cos(d*x
 + c))*sin(d*x + c))/(a^2*d*cos(d*x + c)^2 + 2*a^2*d*cos(d*x + c) + a^2*d), -1/4*(sqrt(2)*((A - 7*C)*cos(d*x +
 c)^2 + 2*(A - 7*C)*cos(d*x + c) + A - 7*C)*sqrt(a)*arctan(sqrt(2)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos
(d*x + c)/(sqrt(a)*sin(d*x + c))) - 2*((A + 5*C)*cos(d*x + c) + 4*C)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*s
in(d*x + c))/(a^2*d*cos(d*x + c)^2 + 2*a^2*d*cos(d*x + c) + a^2*d)]

Sympy [F]

\[ \int \frac {\sec (c+d x) \left (A+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^{3/2}} \, dx=\int \frac {\left (A + C \sec ^{2}{\left (c + d x \right )}\right ) \sec {\left (c + d x \right )}}{\left (a \left (\sec {\left (c + d x \right )} + 1\right )\right )^{\frac {3}{2}}}\, dx \]

[In]

integrate(sec(d*x+c)*(A+C*sec(d*x+c)**2)/(a+a*sec(d*x+c))**(3/2),x)

[Out]

Integral((A + C*sec(c + d*x)**2)*sec(c + d*x)/(a*(sec(c + d*x) + 1))**(3/2), x)

Maxima [F]

\[ \int \frac {\sec (c+d x) \left (A+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^{3/2}} \, dx=\int { \frac {{\left (C \sec \left (d x + c\right )^{2} + A\right )} \sec \left (d x + c\right )}{{\left (a \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \]

[In]

integrate(sec(d*x+c)*(A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate((C*sec(d*x + c)^2 + A)*sec(d*x + c)/(a*sec(d*x + c) + a)^(3/2), x)

Giac [A] (verification not implemented)

none

Time = 1.51 (sec) , antiderivative size = 185, normalized size of antiderivative = 1.47 \[ \int \frac {\sec (c+d x) \left (A+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^{3/2}} \, dx=\frac {\frac {\sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a} {\left (\frac {\sqrt {2} {\left (A a^{2} + C a^{2}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2}}{a^{3} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )} - \frac {\sqrt {2} {\left (A a^{2} + 9 \, C a^{2}\right )}}{a^{3} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - a} - \frac {\sqrt {2} {\left (A - 7 \, C\right )} \log \left ({\left | -\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a} \right |}\right )}{\sqrt {-a} a \mathrm {sgn}\left (\cos \left (d x + c\right )\right )}}{4 \, d} \]

[In]

integrate(sec(d*x+c)*(A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(3/2),x, algorithm="giac")

[Out]

1/4*(sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)*(sqrt(2)*(A*a^2 + C*a^2)*tan(1/2*d*x + 1/2*c)^2/(a^3*sgn(cos(d*x + c)
)) - sqrt(2)*(A*a^2 + 9*C*a^2)/(a^3*sgn(cos(d*x + c))))*tan(1/2*d*x + 1/2*c)/(a*tan(1/2*d*x + 1/2*c)^2 - a) -
sqrt(2)*(A - 7*C)*log(abs(-sqrt(-a)*tan(1/2*d*x + 1/2*c) + sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)))/(sqrt(-a)*a*s
gn(cos(d*x + c))))/d

Mupad [F(-1)]

Timed out. \[ \int \frac {\sec (c+d x) \left (A+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^{3/2}} \, dx=\int \frac {A+\frac {C}{{\cos \left (c+d\,x\right )}^2}}{\cos \left (c+d\,x\right )\,{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{3/2}} \,d x \]

[In]

int((A + C/cos(c + d*x)^2)/(cos(c + d*x)*(a + a/cos(c + d*x))^(3/2)),x)

[Out]

int((A + C/cos(c + d*x)^2)/(cos(c + d*x)*(a + a/cos(c + d*x))^(3/2)), x)